Extending Iteratorsfor Advanced Query Execution

FlorianWaas

CWiI
Kruislaan413
1098SJAmsterdam
TheNetherlands

flw@cwi.nl

Abstract

Today’s commecial relational databasesystemsisetree-
shapedxecutionplans. Theevaluationtechniquedor these
plan are well undesstoodand have beenrefinedover the
last decade However, for queriesthat containdisjunctive
predicates,using the more generl classof direct acyclic
graphsand splitting data streamscan be beneficial. Un-
fortunately the iterator basedevaluationtechniquesused
for tree-shapeglansdo not apply to this case Iterators
implementa breadthfirst seach providing full encapsula-
tion whee operators communicatdy answeedrequestsn
syndironousmanner

In this paper we develop an extensionof the corven-
tional iterator basedevaluationtechnique We introduce
requeshandlesthat add context informationto thedatare-
guestswvhich allowsfor arbitrary plantopologiesincluding
cycles. Theoriginal problemof evaluating planswith op-
erators that split data streamscan thenbe solvedby mere
rewriting of the executionplan.

Keywords: Queryevaluation, Iterators, Disjunctivepredi-
cates

1 Introduction

Query executionis the lastin the chain of tasksin the
guery evaluationprocesswhich executesthe relationalal-
gebraexpressionthe queryoptimizergenerated Sincethe
relationalalgebrais a functional approach the evaluation
of any expressiorin thisalgebracanbe structuredasatree.
The nodesdepictthe operatorsandthe edgesexpressdata
dependencies.

The expressionsre evaluatedwith a kind of depth-first
searchknown asiteratorconcepfiGra9d. Iteratorscanbe

viewed asnestedunction calls wherean operatorequests
datafrom its predecessorghich in turn may requestdata
from their predecessorand so on. The conceptof itera-
tors emeged as the de facto standardfor essentiallytwo
reasonsits resourcesfficiency andthe strict encapsulation
which guaranteea high degreeof extensibility.

In the traditionalrelationalsetting,the outputof an op-
eratorconsistsalwaysof qualifying data. Considerfor in-
stancea filter that implementsa restriction. All datathe
filter passe®nto the next operatorhasto fulfill thisrestric-
tion.

As Kemperet. al. shavedin [KMPS94 and[SPMK95,
in the context of disjunctive queries,it canbe very bene-
ficial to also considerthe datathat doesnot qualify. Be-
causejn somesituationsdatathat qualifiesat one operator
canprobablybypasotheroperatoravhereasiatathatdoes
not qualify in thefirst placeneeddo passadditionalfilters.
The resulting evaluation plans are no longer tree-shaped.
More generalpperatorsnay split the datastreamandunify
it atalaterpointin time again.However, asthey obsened,
this new classof planscannotbe evaluatedwith theiterator
modelasthe principle that every datarequestis answered
with eithera dataitem or, if no further datais to be pro-
cessedwith a specialtoken,doesnolongerapply.

We will develop a solutionto this problemwhich adds
two new aspectdo the iteratorconceptpreservingthe ad-
vantage®f theoriginalapproachFirst, all datarequestsire
identified by a requesthandleso that eachoperatorknows
who requestedhe data and has thereforethe possibility
to respondin differentways. Thus, operatorsmay have
ary numberof inputsor outputsto allow for arbitraryplan
topologies. And secondlyrequestanay be answeredvith
aspecialttokenthatindicatesthat no datais availableat the
moment. Thosetwo extensionsprovide a flexible frame-
work in which the problemsimposedby treesother than
tree-shapedanbe solvedby mererewriting of theplan.



class Iterator

{
Qéid open();
Dat aUnit next();
voi d close();

}

Figure 1. lterator interface .

2 lterators

The concepof iteratorsis widely usedin bothcommer
cial databasetike DB2 or SQLSerer, and researchpro-
totypes[Gra9Q. In this section,we outline the principles,
following Graefes approachpriefly. For a more detailed
description,we refer the interestedreaderto [Gra93 and
the standarditeratureon databassystemmplementation.

Everyoperatori.e. nodeof anevaluationplancanbeab-
stractedwith aninterfaceconsistingof threecomponentsis
mentionedabore. Figurel shavs a C++ stylelik e notation.
Therolesareasfollows:

open. Operatorsnay needto setup internalstructuredik e
memorybuffersetc. All theseinitializationsaredone
in thecall to theopenroutine.

Theoperatompropagatethe opento its childrenwhich

in turnpasst ontotheirpredecessorgcursvely. That
is, after calling the openof theroot operatorall neces-
sarystructureof the queryplangetinitialized.

next. This procedureémplementsthe actualalgebraicop-
eratorfor a singleunit of data(Dat aUni t ). In a se-
guentialplanthistypically is asingletuple—inparallel
systemswherethe passingon may involve additional
communicatiorcosts,a larger granularitycanbe cho-
sen,e.g.pagegseebelow).

Similar to the open the next call is propagateé@ndin-
put datais demandedrom the child operators. The
next callis alwaysanswereavith qualifyingdataor the
End-Of-Steamtoken, a specialinstanceof Dat aU-
ni t indicatingthatnomoredatais available. Depend-
ing onthealgebraimatureof theoperatomotall of its
inputs are handledthe sameway but for instanceall
dataof onechild is processeteforearny datafrom the
next child is requested. Also the casethat all input
datahasto be processetbeforearny outputis produced
is possibleg.g.whensortingor processingggreates.

close. Theclosecall is the counterparof the open Tem-
porarydatastructuresecessarjor a properfunction-
ing of the next arereleasedindresourcesrereturned
to the operatingsystems resourcepool. As with all

other operations the closeis recursvely propagated
throughouthequeryplan.

Theiteratorconcepthasprovenavery robustimplemen-
tationof relationalalgebraicoperatorslts mainadvantages
aretheeasilyachievedextensibility with respecto new op-
eratorsaswell asto differentimplementationgor one op-
erator However, mostnotableis theimplicit resourcenan-
agement:all datais generatedbn demand(next call), i.e.
only whenneededor the next processingsteps,so, no re-
sourcesareoccupiedongerthannecessaryDueto this fact
the iteratorconceptis referredto asdemand-driverevalu-
ation paradigm We will useboth namessynorymouslyin
theremaindeof the paper

3 Non-Deterministic Data Availability

Fromthedisjunctive queriesmentionedabove we derive
a more generalmodel that consistsof an operatorwhich
splitsdataaccordingto a predicatento severaldisjoint sets
(seeFig. 2a,spLIT), thatis, branchesn the executionplan.
Finally afterthedatais assignedo acertainbranchandpro-
cessedhe separateesultsare collected(CoLLECT). The
branchesmay contain an arbitrary number of operators.
However, at mostone of the branchesmay be empty i.e.
containno operatoraswith the previousexample.To have
more than one empty branchis not useful—thereforave
excludethis caseform further considerationsWe call a sit-
uationwherethe activation of a partial queryplan depends
on predicateevaluationat run time, non-deterministiclata
availability. Similar situationsalso occurin paralleland
distributeddatabasegsra96 Waa99.

For themomentlet usassumehatevery branchcontains
only onesingleoperatomndeachoperatomoutputsall of the
datait consumes.This correspondso restrictionsall data
fulfills.

thefirstrequests sentto thetop mostoperator Thenit is
passedo the predecessaandsoon. In atree-shapedraph
it doesnot matterwhich side of a unionis evaluatedfirst,
thatis, oneof the sidesmay be preferredfrom theresource
allocationpointof view but bothwayswork. However, with
non-deterministiclataavailability the requesthasto antici-
patethe outcomeof the sPLIT. Sincethisis impossibledue
to the encapsulatiorof the predicatein spLIT, the follow-
ing may happen:The requestis sentto the COLLECT (cf.
2b (1)) whichin turn sendst to oneof its predecessors—no
matterthe particulardecisionmechanismusedfor to de-
cide which predecessato call. Requestareindicatedby
gray, responsedy black arrowvs. Let us assumewithout
lossof generalityit is sentto left asindicatedin Figure2b
by step(2). The requestis propagatedo the spLIT and
datais requestedrom thebottommostoperator(4). An an-
sweris obtainedandthe control flow returnsto the spPLIT.



Q

COLLECT

|
COCOCD

[

SPLIT

@

— Data Dependencies

Flow of Request

-
1

== Flow of Data

Figure 2. General model for non-deterministic data availability .

If the sPLIT assignghe datato the left branchthe datais
forwardedto the callerssuccessiely andthe control flow
returnsto COLLECT etc. However, if the datais assigned
to the middle or right branchby the spLIT the processing
breaksas the function call down the left branchmustbe
closedfirst (cf. 2b(8)).

The only solution suggestedo far usesa buffer at the
SPLIT [CKM*99]. The cOLLECT sendsarequestown on
oneof thebranchesandtriesto getdatathatfulfills thepar
ticular branchs predicate.All datathatis checled andas-
signedto adifferentbranchis bufferedfor thetime being.If
thebufferis full or nofurtherdatafrom spLIT’spredecessor
is available,but no datawasassignto the calling branchthe
requesis closedwith anemptytuple anda new requestis
sentdown from the coLLECT on anothetbranch.However,
this techniquehasthe severe dravbackthat possiblylarge
intermediateresultsare materializedin the buffer. More-
over, substantiabverheadof unnecessarfunction calls is
added. Last and most notably this techniquepartly sac-
rifices extensibility as for instancethe nestingof several
SPLIT/COLLECT pairsis not possible.

4 Request handlesand TNAs

Our solutionto the problemconsistsof two parts. First,
we enrich the iterator model so that operatorscan distin-
guishdifferentkinds of requests.Then,we restructureghe
qgueryplanusingthis new feature.

In orderto copewith operatorghat provide morethan

Dat aUnit TNA;

cl ass Request|terator

{
voi d open(Request Hdl &hdl);
Dat aUnit next (RequestHdl &hdl,...);
voi d cl ose(Request Hdl &hdl);

}

Figure 3. Extended interface .

just oneoutputstreamwe extendthe genericiteratorinter-
facein two ways:

1. All functionsdifferentiatetheir callersby requeshan-
dles! This allows individual actionfor differentcon-
sumeroperators.

2. Besides qualifying tuples and the End-Of-Stream
token, the next call may also return a special
Tempoarily-Not-Available (TNA) token, indicating
that no qualifying datais available at the moment
Streamsthat may contain TNAs are called non-strict
otherwisestrict.

In Figure3, theextendednterfaceis shavn. Usingthe new
interface,we are no longerrestrictedto tree-shapedjuery

1From the technicalpoint of view, requesthandlesare comparabldo
uNIx file handles.



plans. But to solve the problemof non-deterministicdata
availability, we alsoneedto transformthe queryplan. We
collapsethe sPLIT and COLLECT operatorsto one single
operatorcalledHUB, asshovn in Figure4.

As before,requestareshonvn asgrayarrons, responses
black. The numbersllustratethe singlephasedor atuple
thatqualifiesfor theright operator After fetchingthetuple
from the precedingoperator(2-5) a requestis sentto the
right operator(6) which in turn requestghe datafrom the
HUB (7,8),theanswelis processe@ndreturnedo theHUB
(9). Finally, the resulttuple is passen to the successor
(10).

Using TNA tokensensuresconsistentprocessing. Fur-
thermore,the streamto the successooperatoris always
strict,i.e.arny regularoperatorcanbeusedassuccessoiThe
extensionandmaodificationto bothevaluationparadigmand
querygraphadhereto the basicprinciple of encapsulation
providing unrestrictedlexibility liketheoriginaliteratorin-
terface.

Discussion

Theintroducedequeshandlegogethemith theconcept
of TNA tokensallow the generalhandling of query plans
otherthantree-shapedvith a simple,soundandconsistent
technique However, therearesomepointsthatneedpartic-
ular consideratiorwhenit comesto an efficientimplemen-
tation.

1. During the assemblyof the query plan the additional
decisionwhetherto usea strict or a non-strictversion
of aparticularoperatomeedso be made.Unlike with
the bareiterator paradigm,not all combinationsare
allowed—somemay leadto deadlocks.On the other
hand,it appearedn all our experimentstherealways
is a deadlock-freevariant that can be chosen. This
subjectrequiresfurtherresearclandexplicit modeling
though.

2. The way we introducedthe new evaluationparadigm
was to render the principle as lucid as possible.
Clearly, wewould addmary superfluousunctioncalls
to the execution,resultingin unnecessargopying of
dataover the stack,to the execution. But alsoimple-
mentingthe bare demand-drren iteratorswith func-
tion calls (next) is known to be too expensve a strat-
egy. Thereforethenext callsaretranslatednto a navi-
gationonthetreestructurewithout copying ary tuples
unlessnecessargsfor instancan JoINswhenthefor-
mat of the datachanges.We usea similar technique
for the extendediterators. TNAS do not get copied
through a possibly deepnestingof function calls—
considercaseswherea branchconsistsof morethan
only oneoperatorbut the addresf the first calleris

usedto getbackin onesinglestepandresumeprocess-
ing without ary greatdelay

Finally, enrichinga corventionalquery processingsystem
with thenew paradigmis easy Thenecessarplantransfor

mationscanall be doneafter the query optimizationtook
placeanddo not interferewith ary otherstageof the pro-
cessing.

5 Summary

In this paper we addressedthe problem of non-
deterministic data availability in query evaluation. We
shaved that in caseswhere the activation of parts of a
guery plan dependson run-time decisions,the demand-
driven evaluationparadigmcannotbe applied. We devel-
opedanextensionthatenablesnultiple outputsperoperator
andgivesusthe possibility to distinguishthe calling oper
ators. Basedon this fundamentakxtensionwe re-modeled
the original query graphand shoved how to handlenon-
deterministicdataavailability preservindgull encapsulation,
flexibility andfacilitate the exchangeof implementations.
The conceptgpresentedhave beenimplementedn a query
engineprototypeand proved a framevork that is easyto
realize,enablesextensibility by its uniform interface,and
mostnotableprovidesrun-time andresourceefficient exe-
cution.

In caseno datastreamsplitting operatorsare used,the
new techniquereducesxactly to the corventionaldemand-
drivenevaluationparadignmproviding full compatibility.

Our agendafor future researchincludesa theoretical
modelthatallows usto verify practicalexperiencethatwe
canalwaysfind a dead-lockfree rewriting of the original
querygraph.

Furthermorewe seeparallelqueryprocessingasanin-
terestingareaof applicationwheredatapartitioning spLIT
operatorsare usedto distribute dataamongdifferent pro-
cesse$Waa99.

Acknowledgments

Thanksare due to CesarGalindo-Legariaand his col-
leaguesat Microsoft's SQLSener group for fruitful dis-
cussionson the subjectaswell asto Nikola Dimitrov who
helpedimplementthe prototypeof the executionengine.

References

[CKM*99] J.ClaussenA. Kemper G. Moerkotte,K. Pei-
thner and M. Steinbrunn. Optimizationand
Evaluation of Disjunctive Queries. |EEE
Trans.on Knowledg and Data Engineering
1999.To appear



[Gra9Q]

[Gra93]

[Grage6]

[KMPS94]

[SPMK95]

[Waa99]

Q

COLLECT

0 D

SPLIT

@)

— Data Dependencies

== Flow of Data

Figure 4. Collapsing SPLIT and COLLECT.

G. Graefe.Encapsulatiomf Parallelismin the
Volcano Query ProcessingSystem. In Proc.
of the ACM SIGMODInt'l. Conf on Manage-
mentof Data, pages749—-764,Atlantic City,
NJ,USA, May 1990.

G. Graefe. Query EvaluationTechniquedor
Large Databases. ACM ComputingSurveys,
25(2):73-170Junel993.

G. Graefe. Iterators, Schedulers, and
Distributed-memoryParallelism. Softwae—
Practice & Experience 26(4):427-452 April
1996.

A. Kemper G. Moerkotte, K. Peithney and
M. Steinbrunn.  Optimizing Disjunctive
Queriesand Expensve Predicates. In Proc.
of the ACM SIGMODInt'l. Conf on Manage-
ment of Data, pages336—347,Minneapolis,
MN, USA, May 1994.

M. SteinbrunnK. PeithnerG. Moerkotte,and
A. Kemper BypassingJoinsin Disjunctive
Queries. In Proc. of the Int'l. Conf on Very
Large Data Bases pages228-238, Zurich,
Switzerland Septembef 995.

F. Waas. Handling Non-deterministicData
Availability in Parallel Query Execution. In
Int'l. Workshop on Parallel and Distributed

Databases pages 61-65, Florence, Italy,
Septembel999.



