
Extending Iterators for Advanced Query Execution

FlorianWaas

CWI
Kruislaan413

1098SJAmsterdam
TheNetherlands

flw@cwi.nl

Abstract

Today’s commercial relational databasesystemsusetree-
shapedexecutionplans.Theevaluationtechniquesfor these
plan are well understoodand havebeenrefinedover the
last decade. However, for queriesthat containdisjunctive
predicates,using the more general classof direct acyclic
graphsand splitting data streamscan be beneficial. Un-
fortunately, the iterator basedevaluation techniquesused
for tree-shapedplansdo not apply to this case. Iterators
implementa breadthfirst search providing full encapsula-
tion where operatorscommunicatebyansweredrequestsin
synchronousmanner.

In this paper we develop an extensionof the conven-
tional iterator basedevaluation technique. We introduce
requesthandlesthataddcontext informationto thedatare-
questswhich allowsfor arbitrary plan topologiesincluding
cycles. Theoriginal problemof evaluatingplanswith op-
erators that split data streamscan thenbe solvedby mere
rewriting of theexecutionplan.

Keywords: Queryevaluation,Iterators, Disjunctivepredi-
cates

1 Introduction

Queryexecutionis the last in the chainof tasksin the
queryevaluationprocesswhich executesthe relationalal-
gebraexpressionthe queryoptimizergenerated.Sincethe
relationalalgebrais a functionalapproach,the evaluation
of any expressionin thisalgebracanbestructuredasa tree.
The nodesdepictthe operatorsandthe edgesexpressdata
dependencies.

Theexpressionsareevaluatedwith a kind of depth-first
searchknown asiteratorconcept[Gra93]. Iteratorscanbe

viewedasnestedfunctioncallswhereanoperatorrequests
datafrom its predecessorswhich in turn may requestdata
from their predecessorsand so on. The conceptof itera-
tors emerged as the de facto standardfor essentiallytwo
reasons:its resourceefficiency andthestrict encapsulation
which guaranteesa highdegreeof extensibility.

In the traditionalrelationalsetting,the outputof an op-
eratorconsistsalwaysof qualifying data. Considerfor in-
stancea filter that implementsa restriction. All datathe
filter passeson to thenext operatorhasto fulfill this restric-
tion.

As Kemperet.al. showedin [KMPS94] and[SPMK95],
in the context of disjunctive queries,it canbe very bene-
ficial to also considerthe datathat doesnot qualify. Be-
cause,in somesituationsdatathatqualifiesat oneoperator
canprobablybypassotheroperatorswhereasdatathatdoes
not qualify in thefirst placeneedsto passadditionalfilters.
The resultingevaluationplansare no longer tree-shaped.
Moregeneral,operatorsmaysplit thedatastreamandunify
it at a laterpoint in time again.However, asthey observed,
thisnew classof planscannotbeevaluatedwith theiterator
modelasthe principle that every datarequestis answered
with eithera dataitem or, if no further datais to be pro-
cessed,with a specialtoken,doesno longerapply.

We will develop a solution to this problemwhich adds
two new aspectsto the iteratorconceptpreservingthe ad-
vantagesof theoriginalapproach.First,all datarequestsare
identifiedby a requesthandleso that eachoperatorknows
who requestedthe data and has thereforethe possibility
to respondin different ways. Thus, operatorsmay have
any numberof inputsor outputsto allow for arbitraryplan
topologies.And secondlyrequestsmay be answeredwith
a specialtokenthatindicatesthatno datais availableat the
moment. Thosetwo extensionsprovide a flexible frame-
work in which the problemsimposedby treesother than
tree-shapedcanbesolvedby mererewriting of theplan.

1



class Iterator�
...
void open();
DataUnit next();
void close();�

Figure 1. Iterator interface .

2 Iterators

Theconceptof iteratorsis widely usedin bothcommer-
cial databaseslike DB2 or SQLServer, and researchpro-
totypes[Gra90]. In this section,we outline the principles,
following Graefe’s approach,briefly. For a moredetailed
description,we refer the interestedreaderto [Gra93] and
thestandardliteratureon databasesystemimplementation.

Everyoperator, i.e.nodeof anevaluationplancanbeab-
stractedwith aninterfaceconsistingof threecomponentsas
mentionedabove. Figure1 showsa C++ stylelikenotation.
Therolesareasfollows:

open. Operatorsmayneedto setup internalstructureslike
memorybuffersetc. All theseinitializationsaredone
in thecall to theopenroutine.

Theoperatorpropagatestheopento its childrenwhich
in turnpassit onto theirpredecessorsrecursively. That
is, aftercalling theopenof theroot operatorall neces-
sarystructuresof thequeryplangetinitialized.

next. This procedureimplementsthe actualalgebraicop-
eratorfor a singleunit of data(DataUnit). In a se-
quentialplanthistypically isasingletuple—inparallel
systemswherethe passingon may involve additional
communicationcosts,a largergranularitycanbecho-
sen,e.g.pages(seebelow).

Similar to theopen, thenext call is propagatedandin-
put datais demandedfrom the child operators. The
next call is alwaysansweredwith qualifyingdataor the
End-Of-Streamtoken, a specialinstanceof DataU-
nit indicatingthatnomoredatais available.Depend-
ing on thealgebraicnatureof theoperatornotall of its
inputsarehandledthe sameway but for instanceall
dataof onechild is processedbeforeany datafrom the
next child is requested.Also the casethat all input
datahasto beprocessedbeforeany outputis produced
is possible,e.g.whensortingor processingaggregates.

close. The closecall is the counterpartof the open. Tem-
porarydatastructuresnecessaryfor a properfunction-
ing of thenext arereleasedandresourcesarereturned
to the operatingsystem’s resourcepool. As with all

other operations,the close is recursively propagated
throughoutthequeryplan.

Theiteratorconcepthasprovenaveryrobustimplemen-
tationof relationalalgebraicoperators.Its mainadvantages
aretheeasilyachievedextensibilitywith respectto new op-
eratorsaswell asto differentimplementationsfor oneop-
erator. However, mostnotableis theimplicit resourceman-
agement:all datais generatedon demand(next call), i.e.
only whenneededfor the next processingsteps,so,no re-
sourcesareoccupiedlongerthannecessary. Dueto this fact
the iteratorconceptis referredto asdemand-drivenevalu-
ation paradigm. We will usebothnamessynonymouslyin
theremainderof thepaper.

3 Non-Deterministic Data Availability

Fromthedisjunctivequeriesmentionedabovewederive
a more generalmodel that consistsof an operatorwhich
splitsdataaccordingto apredicateinto severaldisjoint sets
(seeFig. 2a,SPLIT), thatis, branchesin theexecutionplan.
Finally afterthedatais assignedto acertainbranchandpro-
cessedthe separateresultsarecollected(COLLECT). The
branchesmay contain an arbitrary numberof operators.
However, at mostoneof the branchesmay be empty, i.e.
containno operator, aswith thepreviousexample.To have
more than one empty branchis not useful—thereforewe
excludethis caseform furtherconsiderations.We call a sit-
uationwheretheactivationof a partialqueryplandepends
on predicateevaluationat run time, non-deterministicdata
availability. Similar situationsalso occur in parallel and
distributeddatabases[Gra96, Waa99].

For themomentlet usassumethateverybranchcontains
only onesingleoperatorandeachoperatoroutputsall of the
datait consumes.This correspondsto restrictionsall data
fulfills.

thefirst requestis sentto thetopmostoperator. Thenit is
passedto thepredecessorandsoon. In a tree-shapedgraph
it doesnot matterwhich sideof a union is evaluatedfirst,
thatis, oneof thesidesmaybepreferredfrom theresource
allocationpointof view but bothwayswork. However, with
non-deterministicdataavailability therequesthasto antici-
patetheoutcomeof theSPLIT. Sincethis is impossibledue
to the encapsulationof the predicatein SPLIT, the follow-
ing may happen:The requestis sentto the COLLECT (cf.
2b(1)) which in turnsendsit to oneof its predecessors—no
matter the particulardecisionmechanismusedfor to de-
cide which predecessorto call. Requestsare indicatedby
gray, responsesby black arrows. Let us assumewithout
lossof generalityit is sentto left asindicatedin Figure2b
by step(2). The requestis propagatedto the SPLIT and
datais requestedfrom thebottommostoperator(4). An an-
sweris obtainedandthe control flow returnsto the SPLIT.

2



��� ������	�

��� ���� ������	��
�����������

��� ��

����������������� ���

������ !

"
#$����%�"&!"
#$����%�"
!

(b)

1

2

3

4

5 6

7

8

(a)

������ !

Figure 2. General model for non-deterministic data availability .

If the SPLIT assignsthe datato the left branchthe datais
forwardedto the callerssuccessively and the control flow
returnsto COLLECT etc. However, if the datais assigned
to the middle or right branchby the SPLIT the processing
breaksas the function call down the left branchmust be
closedfirst (cf. 2b(8)).

The only solutionsuggestedso far usesa buffer at the
SPLIT [CKM ' 99]. The COLLECT sendsa requestdown on
oneof thebranchesandtriesto getdatathatfulfills thepar-
ticular branch’s predicate.All datathat is checkedandas-
signedto adifferentbranchis bufferedfor thetimebeing.If
thebuffer is full or nofurtherdatafrom SPLIT’spredecessor
is available,but nodatawasassignto thecallingbranchthe
requestis closedwith anemptytupleanda new requestis
sentdown from theCOLLECT on anotherbranch.However,
this techniquehasthe severedrawbackthat possiblylarge
intermediateresultsare materializedin the buffer. More-
over, substantialoverheadof unnecessaryfunction calls is
added. Last and most notably, this techniquepartly sac-
rifices extensibility as for instancethe nestingof several
SPLIT/COLLECT pairsis not possible.

4 Request handles and TNAs

Our solutionto theproblemconsistsof two parts.First,
we enrich the iterator model so that operatorscan distin-
guishdifferentkindsof requests.Then,we restructurethe
queryplanusingthisnew feature.

In order to copewith operatorsthat provide morethan

DataUnit TNA;

class RequestIterator�
...
void open(RequestHdl &hdl);
DataUnit next(RequestHdl &hdl,...);
void close(RequestHdl &hdl);�

Figure 3. Extended interface .

just oneoutputstreamwe extendthegenericiteratorinter-
facein two ways:

1. All functionsdifferentiatetheircallersby requesthan-
dles.1 This allows individual actionfor differentcon-
sumeroperators.

2. Besides qualifying tuples and the End-Of-Stream
token, the next call may also return a special
Temporarily-Not-Available (TNA) token, indicating
that no qualifying data is available at the moment.
Streamsthat may containTNAs arecallednon-strict,
otherwisestrict.

In Figure3, theextendedinterfaceis shown. Usingthenew
interface,we areno longerrestrictedto tree-shapedquery

1From the technicalpoint of view, requesthandlesarecomparableto
UNIX file handles.

3



plans. But to solve the problemof non-deterministicdata
availability, we alsoneedto transformthe queryplan. We
collapsethe SPLIT and COLLECT operatorsto one single
operatorcalledHUB, asshown in Figure4.

As before,requestsareshown asgrayarrows, responses
black. Thenumbersillustratethe singlephasesfor a tuple
thatqualifiesfor theright operator. After fetchingthetuple
from the precedingoperator(2–5) a requestis sentto the
right operator(6) which in turn requeststhe datafrom the
HUB (7,8),theansweris processedandreturnedto theHUB

(9). Finally, the result tuple is passedon to the successor
(10).

Using TNA tokensensuresconsistentprocessing.Fur-
thermore,the streamto the successoroperatoris always
strict,i.e.any regularoperatorcanbeusedassuccessor. The
extensionandmodificationto bothevaluationparadigmand
querygraphadhereto the basicprinciple of encapsulation
providingunrestrictedflexibility liketheoriginal iteratorin-
terface.

Discussion

Theintroducedrequesthandlestogetherwith theconcept
of TNA tokensallow the generalhandlingof query plans
otherthantree-shapedwith a simple,soundandconsistent
technique.However, therearesomepointsthatneedpartic-
ular considerationwhenit comesto anefficient implemen-
tation.

1. During the assemblyof the queryplan the additional
decisionwhetherto usea strict or a non-strictversion
of a particularoperatorneedsto bemade.Unlike with
the bare iterator paradigm,not all combinationsare
allowed—somemay leadto deadlocks.On the other
hand,it appearedin all our experimentstherealways
is a deadlock-freevariant that can be chosen. This
subjectrequiresfurtherresearchandexplicit modeling
though.

2. The way we introducedthe new evaluationparadigm
was to render the principle as lucid as possible.
Clearly, wewouldaddmany superfluousfunctioncalls
to the execution,resultingin unnecessarycopying of
dataover the stack,to the execution. But alsoimple-
mentingthe baredemand-driven iteratorswith func-
tion calls (next) is known to be too expensive a strat-
egy. Therefore,thenext callsaretranslatedinto anavi-
gationon thetreestructurewithoutcopying any tuples
unlessnecessaryasfor instancein JOINswhenthefor-
mat of the datachanges.We usea similar technique
for the extendediterators. TNAs do not get copied
through a possibly deepnestingof function calls—
considercaseswherea branchconsistsof more than
only oneoperatorbut the addressof the first caller is

usedto getbackin onesinglestepandresumeprocess-
ing withoutany greatdelay.

Finally, enrichinga conventionalqueryprocessingsystem
with thenew paradigmis easy. Thenecessaryplantransfor-
mationscanall be doneafter the queryoptimizationtook
placeanddo not interferewith any otherstageof the pro-
cessing.

5 Summary

In this paper, we addressedthe problem of non-
deterministicdata availability in query evaluation. We
showed that in caseswhere the activation of parts of a
query plan dependson run-time decisions,the demand-
driven evaluationparadigmcannotbe applied. We devel-
opedanextensionthatenablesmultipleoutputsperoperator
andgivesus thepossibility to distinguishthecalling oper-
ators.Basedon this fundamentalextensionwe re-modeled
the original query graphand showed how to handlenon-
deterministicdataavailability preservingfull encapsulation,
flexibility and facilitate the exchangeof implementations.
Theconceptspresentedhave beenimplementedin a query
engineprototypeand proved a framework that is easyto
realize,enablesextensibility by its uniform interface,and
mostnotableprovidesrun-timeandresourceefficient exe-
cution.

In caseno datastreamsplitting operatorsareused,the
new techniquereducesexactly to theconventionaldemand-
drivenevaluationparadigmproviding full compatibility.

Our agendafor future researchincludesa theoretical
modelthatallows us to verify practicalexperiencethatwe
canalways find a dead-lockfree rewriting of the original
querygraph.

Furthermore,we seeparallelqueryprocessingasan in-
terestingareaof applicationwheredatapartitioningSPLIT

operatorsare usedto distribute dataamongdifferentpro-
cesses[Waa99].

Acknowledgments

Thanksare due to CesarGalindo-Legariaand his col-
leaguesat Microsoft’s SQLServer group for fruitful dis-
cussionson the subjectaswell asto Nikola Dimitrov who
helpedimplementtheprototypeof theexecutionengine.

References

[CKM ' 99] J.Claussen,A. Kemper, G. Moerkotte,K. Pei-
thner, and M. Steinbrunn. Optimizationand
Evaluation of Disjunctive Queries. IEEE
Trans.on Knowledge and Data Engineering,
1999.To appear.

4



��� ������	�

��� ���� ������	��
�����������

������ !

(a)

1

2

3 4

10

5

(
)
*

"
#$����%�"
! 6

9

8

7

(b)



��� ��

����������������� ���

Figure 4. Collapsing SPLIT and COLLECT.

[Gra90] G. Graefe.Encapsulationof Parallelismin the
VolcanoQuery ProcessingSystem. In Proc.
of theACM SIGMODInt’l. Conf. on Manage-
mentof Data, pages749–764,Atlantic City,
NJ,USA, May 1990.

[Gra93] G. Graefe. QueryEvaluationTechniquesfor
Large Databases.ACM ComputingSurveys,
25(2):73–170,June1993.

[Gra96] G. Graefe. Iterators, Schedulers, and
Distributed-memoryParallelism. Software—
Practice& Experience, 26(4):427–452,April
1996.

[KMPS94] A. Kemper, G. Moerkotte, K. Peithner, and
M. Steinbrunn. Optimizing Disjunctive
Queriesand Expensive Predicates. In Proc.
of theACM SIGMODInt’l. Conf. on Manage-
ment of Data, pages336–347,Minneapolis,
MN, USA, May 1994.

[SPMK95] M. Steinbrunn,K. Peithner, G. Moerkotte,and
A. Kemper. BypassingJoins in Disjunctive
Queries. In Proc. of the Int’l. Conf. on Very
Large Data Bases, pages228–238, Zurich,
Switzerland,September1995.

[Waa99] F. Waas. Handling Non-deterministicData
Availability in Parallel Query Execution. In
Int’l. Workshop on Parallel and Distributed

Databases, pages 61–65, Florence, Italy,
September1999.

5


